
Some models suggest that clouds (and the convection that gives rise to them) will clump together more with global warming — and produce more rainfall extremes that often far exceed what theory predicts. But other simulations suggest that clouds will congregate less. “There seems to be still possibly a range of answers,” says Allison Wing, a climate scientist at Florida State University in Tallahassee who has compared various models.
Scientists are beginning to try to reconcile some of these inconsistencies using powerful types of computer simulations called global storm-resolving models. These can capture the fine structures of clouds, thunderstorms, and cyclones while also simulating the global climate. They bring a 50-fold leap in realism beyond the global climate models scientists generally use—but demand 30,000 times more computational power.
Using one such model in a paper published in 2024, Bao, Muller, and their collaborators found that clouds in the tropics congregated more as temperatures increased—leading to less frequent storms but ones that were larger, lasted longer, and, over the course of a day, dumped more rain than expected from theory.
But that work relied on just one model and simulated conditions from around one future time point—the year 2070. Scientists need to run longer simulations using more storm-resolving models, Bao says, but very few research teams can afford to run them. They are so computationally intensive that they are typically run at large centralized hubs, and scientists occasionally host “hackathons” to crunch through and share data.
Researchers also need more real-world observations to get at some of the biggest unknowns about clouds. Although a flurry of recent studies using satellite data linked the clustering of clouds to heavier rainfall in the tropics, there are large data gaps in many tropical regions. This weakens climate projections and leaves many countries ill-prepared. In June of 2025, floods and landslides in Venezuela and Colombia swept away buildings and killed at least a dozen people, but scientists don’t know what factors worsened these storms because the data are so paltry. “Nobody really knows, still, what triggered this,” Hernández Deckers says.
New, granular data are on their way. Wing is analyzing rainfall measurements from a German research vessel that traversed the tropical Atlantic Ocean for six weeks in 2024. The ship’s radar mapped clusters of convection associated with the storms it passed through, so the work should help researchers see how clouds organize over vast tracts of the ocean.
And an even more global view is on the horizon. The European Space Agency plans to launch two satellites in 2029 that will measure, among other things, near-surface winds that ruffle Earth’s oceans and skim mountaintops. Perhaps, scientists hope, the data these satellites beam back will finally provide a better grasp of clumping clouds and the heaviest rains that fall from them.
Research and interviews for this article were partly supported through a journalism residency funded by the Institute of Science & Technology Austria (ISTA). ISTA had no input into the story. This story originally appeared on Knowable Magazine.
https://arstechnica.com/science/2025/12/when-clouds-flock-together/

